
Mesh Addition Based on the Depth Image (MABDI)

Lucas Chavez1 and Ron Lumia1, Fellow, IEEE

Abstract— Many robotic applications, especially those whose
goal is to aid or assist through human-robot interaction, utilize
a rich map of the world for reasoning tasks such as collision
detection, path planning, or object recognition. Such map, and
the method used to produce it, must take into consideration
real-world constraints. Most mesh-based mapping algorithms
resemble a “black box” and do not provide a mechanism to close
the loop and make decisions about the incoming information.
MABDI leverages the global mesh by finding the difference
between what we expect to see and what we are actually seeing,
and using this to classify the incoming measurements as novel
or not. This allows the surface reconstruction method to be run
only on data that has not yet been represented in the global
mesh. The result is an algorithm that becomes computationally
inexpensive once the environment is known, but can also react
to new objects.

I. INTRODUCTION

Many robotic applications, especially those that involve
human-robot interaction, often require a rich representation
of the environment in order to perform such behavior as
path planning and obstacle avoidance. In general, a rich
representation, or map, is useful for providing situational
awareness to an autonomous agent. A map is also important
for applications such as teleoperation [1].

The methodology to build this representation is a continu-
ously evolving subject in the field of robotics. The origins of
the research into this problem date back roughly 25 years [2].
Since then the methods and the representations themselves
have continued to evolve at an impressive rate. The main
catalyst behind this growth is the advancement of sensing
technologies over the same time period. In general, sensors
have continued to generate measurements at higher rates,
higher resolution, and lower cost over the years. This has
provided an amazing opportunity to build richer and more
useful representations of the environment.

In robotics, map building in an unknown environment is
referred to as the Simultaneous Localization and Mapping
(SLAM) problem [3]. This label describes the fact that
a methodology which solves the SLAM problem must
simultaneously locate the robot in the environment as well as
map the environment. The focus of this work is the mapping
aspect of the SLAM problem. Fig. 1 gives a visualization of
the goal.

There are different types of data structures that can define a
map. All types have both intrinsic characteristics that impact

1Mechanical Engineering Department and Electrical & Computer Engi-
neering Department, University of New Mexico, Albuquerque, NM, USA
golucasplus@gmail.com, {lucasc,lumia}@unm.edu

Fig. 1. Goal is to create a map from depth images

the algorithms that generate them and constraints that must
be considered for real-world applications. In addition, we
are concerned with rich representation types, in contrast to
sparse representation types [4], because rich types have the
most use in applications such as human-robot interaction.

TABLE I
COMPARISON OF CONSTRAINTS FOR DIFFERENT MAP TYPES

Supported Computationally Low Memory
Inexpensive Requirement

Point Clouds x x -
Surfels - x x
Implicit Functions x - -
Mesh x x x

When considering which type of map is best for real-world
applications, we must consider the constraints imposed by
each type:

• Supported - Is there software, tools, research, algorithms,
etc., for this type of map?

• Computationally Inexpensive - Can the algorithms run
quickly on low cost computers (rather than specialized
hardware)?

• Low Memory Requirement - Can the algorithms run on
hardware with a standard amount of RAM?

Table I compares the constraints of common map types.
We can see, in general a mesh type map satisfies real-world
constraints. It has been used extensively by the gaming and
graphics communities, and so benefits from an incredible
amount of continued research and advances in hardware such
as Graphics Processing Units (GPUs).

Currently, one of the issues with mesh mapping techniques
is they are generally “black box” methods. Meaning the data
comes in from the sensor, those measurements are turned into
a mesh, and then that mesh is appended to a global mesh.
Fig. 2 visualizes this common pipeline in black. The goal



of this work is to design an algorithm to close the loop (as
visualized in red) and allow the system to make decisions
about the incoming data based on what it already knows.

Fig. 2. Common “black box” pipeline in black. The contribution of MABDI
in red.

II. RELATED WORKS

Works related to MABDI are generally based on RGB-D
sensors. This type of sensor has become very popular since
the release of the Kinect from Microsoft, which was the first
mass produced RGB-D sensor of its kind. RGB-D sensors
are inexpensive and produce noisy 640x480 depth images at
30fps. The RGB-D sensor has excited the robotics community
because this has been the first time that depth data has been so
readily accessible from such an inexpensive sensor. Therefore,
methodologies that use RGB-D data must be able to quickly
deal with very high rates of information.

One highly-related work was published by Whelan et al.
in 2012 [5] and more recently in 2013 [6]. The system
they developed was named Kintinuous and was able to
produce a high quality mesh representation of the environment.
Their hybrid system utilized the KinectFusion method [7]
of Newcombe et al. to create a volumetric representation of
the portion of the environment in front of the sensor. As
the sensor moves, portions of the environment that leave the
volume in front of the sensor are ray cast and turned into a
mesh. They obtain very impressive results but also mention
a limitation of their system for future work. The limitation
is that the mesh can not be updated once created, which is
an issue when revisiting parts of the environment. One of
the most impressive current works which has an adaptable
mesh came from Cashier et al. in 2012 [8]. In this work,
they were able to generate and update a mesh with new
measurements from a ToF sensor. They used the difference
between the existing model and the actual measurements to
decide whether to adapt the mesh or add new elements. The
mesh topology was not adaptive to the environment and their
experiments only showed results of mapping a single flat
wall with no robot movement. The system needs to be tested
for object addition and removal.

Research and development of new mapping algorithms
trend towards leveraging the information in the global map
to make decisions about the incoming data. One can see
parallels with how we as humans see the world. MABDI
proposes do this in a computationally feasible way by simply
using differencing and thresholding imaging methods.

III. APPROACH

The algorithmic structure of MABDI can be seen in Fig. 3.
The diagram is very similar to Fig. 2 with the exception of the

Classification component, shown in blue. This Classification
component is MABDI’s contribution to the state-of-art in
mesh based mapping algorithms, and is what gives MABDI
the ability to make decisions about the incoming data.

The Classification component consists of two elements:
1) Generate Expected Depth Image E - Here we take the

global mesh M , render it using computer graphics, and
use the depth buffer of the render window to create
a depth image E of what we expect to see from our
sensor. This method requires the current pose P of the
actual sensor (simulated for our experiments).

2) Classify Depth Image D - Here we classify the actual
depth image D (simulated for our experiments) by first
taking the absolute difference between E and D and
thresholding. If the differences are small, those points
are thrown away and if the differences are large, those
points are kept as Dn. The idea behind this is, if the
difference is large, the measurements are coming from
a part of the environment that has not been seen before,
i.e. novel. The implication of this assumption is that
this version of MABDI cannot handle object removal. It
is worth noting that MABDI can be extended to handle
object removal by using the sign of the difference
between E and D instead of the absolute value.

Fig. 3. MABDI system diagram

From a software perspective, the major difficulty of
implementing the MABDI algorithm was found to be creating
both the simulated depth image D and the expected depth
image E. In addition, managing the complexity of the data
pipeline needed to run the algorithm and the simulation of



the sensor proved to be difficult. Thankfully, Kitware, who
is a leading edge developer of open-source software, created
the Visualization Toolkit (VTK) [9], [10]. At the time of this
writing the VTK Github repository has over 60,000 commits
and is contributed to by supporters such as Sandia National
Labs [11].

MABDI implemented in Python and uses VTK. The code
is available upon request to golucasplus@gmail.com. At the
time of this writing, it consists of over 1,400 lines. The code
that implements the MABDI algorithm itself is around 750
lines.

VTK is aptly designed for the implementation of MABDI
for many reasons. Perhaps the most important is the concept
of a vtkAlgorithm (often called a Filter). This allows a
programmer to create a custom and modular processing
pipeline by defining classes that inherit vtkAlgorithm and
then defining the connections between these classes. For
example, you could have a pipeline that reads an image from
a source (component 1), performs edge detection (component
2), and then renders the image (component 3). Using this
concept, the individual elements of MABDI can be succinctly
defined in individual classes. With that in mind, we can see
in Fig. 4 the layout used in my implementation of MABDI.
Note, vtkImageData and vtkPolyData are VTK types used to
represent an image and mesh respectively:

• Source - Classes with the prefix Source define the
environment that is used for the simulation and provide
a mesh in the form of a vtkPolyData.

• FilterDepthImage - Render the incoming vtkPolyData in
a window and output the depth buffer from the window
as a vtkImageData. The output additionally has pose
information of the sensor.

• FilterClassifier - Implements the true innovation of
MABDI, takes the difference between the two incoming
depth images (vtkImageData) and outputs a new depth
image where the data that is not novel is marked to be
thrown away.

• FilterDepthImageToSurface - Performs surface recon-
struction on the novel points. In this simple implemen-
tation the topology of the mesh is defined in the image
coordinates and can be thought of as a checkerboard
pattern with two triangles in every square. The data is
then projected to real-world coordinates. The topology
and the real-world coordinates are combined to define a
surface and output as a vtkPolyData.

• FilterWorldMesh - Here we simply append the incoming
novel surface to a growing global mesh that is also
output as a vtkPolyData.

IV. EXPERIMENTAL SETUP

It was decided to develop and test MABDI in a completely
simulated environment so that all results could be repeatable
and also to facilitate the ability to debug during the devel-
opment process. This ability was truly invaluable as some
components of the algorithm proved to be complex from an

Fig. 4. MABDI software diagram

implementation perspective. In addition, we can now compare
the resultant global mesh to ground truth.

A. Simulation Parameters

The simulation was designed to be highly configurable
and is implemented by a class named MabdiSimulate. The
class is initialized with parameters that control all aspects
of the simulation. Parameters of a particular importance are
discussed in more detail here:

• Environment - This parameter specifies the environment
used to generate the simulated depth images. Table is an
environment consisting of a table and two cups placed
on the table. The table is 1 meter tall. Bunnies is an
environment consisting of three bunnies who are around
1.5 meters tall. These bunnies are created using the
Stanford Bunny [12], a well known data set in computer
graphics.

• Noise - If true, adds noise to the depth image of the
simulated sensor.

• Dynamic - If true, adds an object during the simulation.
In the case of this analysis, a third bunny is added
half-way through the simulation.

• Iterations - The number of iterations the simulation will
have. This parameter affects the distance the sensor
travels from frame to frame.

For this paper we will be exploring three experimental runs
to demonstrate the ability of the MABDI implementation to
generate valid results. Additionally, the experimental runs
will be able to show the capabilities of the MABDI algorithm
such as handling object addition in the environment.

All experimental runs define a helical path for the sensor
to follow during the simulation. The path circles the objects
in the environment twice. A helical path was chosen because
it returns to a part of the environment that has been already
mapped and is thus “known” to the global mesh. Also, because



TABLE II
DESCRIPTION OF THE EXPERIMENTAL RUNS.

Environment Noise Dynamic Iterations
Run 1 Table False False 30
Run 2 Bunnies True False 50
Run 3 Bunnies True True 50

the path is a helix and not just a circle, the sensor views the
environment from a slightly different position on each pass.

B. Analysis of Simulated Noise

In order to realistically simulate the sensor in a real-world
environment we add noise to the depth image D. See Fig. 3.
The magnitude of the noise added is based on the accuracy
of real-world sensors. As new RGB-D sensors have been
developed, such as the Asus Xtion and the Kinect for Xbox
One, the accuracy of the sensors has continued to improve
[13]. For this work, we take a conservative approach and
utilize the well known error modeling work of Khoshelham
[14] that is based on the original Kinect.

The depth image used by the MABDI algorithm E and
the depth image that comes from simulating the environment
D both use a pinhole camera model. This method has been
validated in the localization work of Fallon [15]. The intrinsic
camera parameters of the pinhole hole model were chosen to
emulate the Kinect sensor [16]. The pinhole model defines a
transformation matrix used to transform between viewpoint
coordinates and real-world coordinates. The z component
of the viewpoint coordinates constitutes the depth image
and are defined to vary between 0 and 1. Due to how the
transformation works, differences in the depth image do not
linearly correspond to changes in real-world coordinates as
can be seen in Fig. 5.

Fig. 5. Viewpoint coordinates to real world coordinates analysis.

The noise added to D is defined by the equation below. The
standard deviation σ=0.001 was chosen so that the resultant
errors in the real-world coordinates would correlate to the

error model in [14]. The text boxes in Fig. 5 show the resultant
real-world error for two values of D; they match the error
model of [14].

Dnoisy(i, j) = D(i, j) +D(i, j) ∗ N (µ=0, σ=0.001)

V. RESULTS

An overview of the experimental runs is given in Fig. 7.
The figure shows a set of six views of information for each
run. These views are created at every iteration and generate
a movie of the run. Fig. 7 shows a snapshot of these views
at different points of the simulation for each run. The views
are described below:

• Top Left - View of the global mesh M from a third
perspective. The wire frame corresponds to the viewing
frustum of the sensor. The light blue helical line is the
path of the sensor. Gray is the simulated environment.
The multi-colored mesh is the global mesh M . The
mesh is multi-colored in order to show the passage of
time. For example, in Run1, The mesh is colored yellow,
light green, and dark green for iterations 1, 2, and 3
respectively.

• Top Middle - Same as Top Left except it shows the
novel surface S instead of the global mesh M .

• Top Right - Plot showing the number of elements in the
global mesh M up to this iteration.

• Bottom Left and Bottom Middle - Actual D and expected
E depth image respectively.

• Bottom Right - The classified depth image. Novel point
Dn are shown in black. Points to be thrown away are
shown in white.

We can notice important aspects of MABDI using Fig. 7.
Notes on each of the runs:

• Run 1 - Top Left shows how the M gets composed
over time. It is important to note that the mesh is not
overlapping itself. This can be understood by noticing S
from Top Middle is the same as the section of M this
is colored dark green.

• Run 2 - This run shows clearly how the classification
process is able to distinguish novel points. This can be
seen by noticing the valley in-between the ear and the
eye of the bunny closest to the sensor. The sensor was
not able to see these points from the prior iteration due
to occlusion. From the sensor’s current perspective, the
points can now be seen. Notice how the valley is missing
in the expected depth image E, classified as novel in
Bottom Right, and thus reconstructed into S. This is a
clear example of the concept behind MABDI.

• Run 3 - This run shows how MABDI reacts to object
addition. At this iteration the middle bunny is suddenly
added. We can follow the data: D shows the new bunny,
E shows what we expect to see (the middle bunny is
not there because it is not in M ), Bottom Right shows
all points corresponding to the new bunny as marked
as novel, and finally the novel points are reconstructed



as S and appended to M . Top Right also shows a large
jump in the number of elements in M due to the new
bunny.

Fig 6 shows the resultant global mesh from all of the runs
along with a plot of the number of elements in the mesh over
iterations. These plots show the main contribution of MABDI
because they level-off as the environment becomes more
known as opposed to traditional “black box” reconstruction
methods where the number of elements increases linearly
over time.

Fig. 6. Global mesh results. Top: Run1. Middle: Run2. Bottom: Run3

VI. CONCLUSION

The goal of MABDI is to determine data from the sensor
that has not yet been represented in the map and use this
data to add to the map. MABDI does this by leveraging the
difference between what we are actually seeing and what
we expect to see. MABDI can work in conjunction with any
“black box” mesh-based surface reconstruction algorithm, and
can be thought of as a general means to provide introspection
to those types of reconstruction methods.

The MABDI implementation was able to successfully
perform in a realistic simulation environment. The results
show how novel sensor data was successfully classified and
used to add to the global mesh. Also, the MABDI algorithm
runs at around 2Hz on a consumer grade laptop with an Intel
i7 processor. This performance means that it is capable of
real-world applications.

Currently MABDI is only designed to handle object
addition, but the idea can be extended to handle both object
addition and removal as discussed in Section III. This would
give the system the capability to handle highly dynamic
environments such as a door opening and closing.

VII. ACKNOWLEDGMENT

This work was support in part by Sandia National Labora-
tories under Purchase Order: 1179196 and NSF grant OISE
#1131305.

REFERENCES

[1] M. W. Kadous, R. K.-M. Sheh, and C. Sammut, “Effective user
interface design for rescue robotics,” in Proceeding of the 1st ACM
SIGCHI/SIGART conference on Human-robot interaction - HRI ’06.
New York, New York, USA: ACM Press, mar 2006, p. 250.

[2] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3D surface construction algorithm,” Computer, vol. 21, no. 4, pp.
163–169, 1987.

[3] S. Thrun, “Robotic mapping: A survey,” Exploring artificial intelligence
in the new millennium, no. February, 2002.

[4] M. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, and
M. Csorba, “A solution to the simultaneous localization and map
building (SLAM) problem,” IEEE Transactions on Robotics and
Automation, vol. 17, no. 3, pp. 229–241, jun 2001.

[5] T. Whelan, M. Kaess, and M. Fallon, “Kintinuous: Spatially Extended
KinectFusion,” 2012.

[6] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. B. McDon-
ald, “Robust Tracking for Real-Time Dense RGB-D Mapping with
Kintinuous,” in ICRA 2013, no. MIT-CSAIL-TR-2012-031. Computer
Science and Artificial Intelligence Laboratory, MIT, sep 2012.

[7] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges,
J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” in 2011
10th IEEE International Symposium on Mixed and Augmented Reality.
IEEE, oct 2011, pp. 127–136.

[8] L.-K. Cahier, T. Ogata, and H. Okuno, “Incremental probabilistic
geometry estimation for robot scene understanding,” in ICRA 2012.
Ieee, may 2012, pp. 3625–3630.

[9] W. J. Schroeder, B. Lorensen, and K. Martin, The visualization toolkit.
Kitware, 2004.

[10] Kitware. (2016) Vtk the visualization toolkit. [Online]. Available:
http://www.vtk.org/overview/

[11] S. N. Labs. (2016) Snl computational systems and software environment.
[Online]. Available: http://www.sandia.gov/asc/computational systems/

[12] G. Turk and M. Levoy, “Zippered polygon meshes from range images,”
in SIGGRAPH ’94. New York, New York, USA: ACM Press, 1994,
pp. 311–318.

[13] E. Lachat, H. Macher, M. Mittet, T. Landes, and P. Grussenmeyer,
“First experiences with kinect v2 sensor for close range 3d modelling,”
The International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. 40, no. 5, p. 93, 2015.

[14] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of
Kinect depth data for indoor mapping applications.” Sensors (Basel,
Switzerland), vol. 12, no. 2, pp. 1437–54, 2012.

[15] M. F. Fallon, H. Johannsson, and J. J. Leonard, “Efficient Scene
Simulation for Robust Monte Carlo Localization using an RGB-D
Camera,” in 2012 IEEE International Conference on Robotics and
Automation. IEEE, may 2012, pp. 1663–1670.

[16] Microsoft. (2016) Microsoft robotics kinect sensor. [Online]. Available:
https://msdn.microsoft.com/en-us/library/hh438998.aspx



Fig. 7. Results of all experimental runs. See Results Section for discussion.


